Human thioredoxin 2 deficiency impairs mitochondrial redox homeostasis and causes early-onset neurodegeneration.

نویسندگان

  • Eliska Holzerova
  • Katharina Danhauser
  • Tobias B Haack
  • Laura S Kremer
  • Marlen Melcher
  • Irina Ingold
  • Sho Kobayashi
  • Caterina Terrile
  • Petra Wolf
  • Jörg Schaper
  • Ertan Mayatepek
  • Fabian Baertling
  • José Pedro Friedmann Angeli
  • Marcus Conrad
  • Tim M Strom
  • Thomas Meitinger
  • Holger Prokisch
  • Felix Distelmaier
چکیده

Thioredoxin 2 (TXN2; also known as Trx2) is a small mitochondrial redox protein essential for the control of mitochondrial reactive oxygen species homeostasis, apoptosis regulation and cell viability. Exome sequencing in a 16-year-old adolescent suffering from an infantile-onset neurodegenerative disorder with severe cerebellar atrophy, epilepsy, dystonia, optic atrophy, and peripheral neuropathy, uncovered a homozygous stop mutation in TXN2. Analysis of patient-derived fibroblasts demonstrated absence of TXN2 protein, increased reactive oxygen species levels, impaired oxidative stress defence and oxidative phosphorylation dysfunction. Reconstitution of TXN2 expression restored all these parameters, indicating the causal role of TXN2 mutation in disease development. Supplementation with antioxidants effectively suppressed cellular reactive oxygen species production, improved cell viability and mitigated clinical symptoms during short-term follow-up. In conclusion, our report on a patient with TXN2 deficiency suggests an important role of reactive oxygen species homeostasis for human neuronal maintenance and energy metabolism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Correction: Ethanol Suppresses PGC-1α Expression by Interfering with the cAMP-CREB Pathway in Neuronal Cells

Alcohol intoxication results in neuronal apoptosis, neurodegeneration and manifest with impaired balance, loss of muscle coordination and behavioral changes. One of the early events of alcohol intoxication is mitochondrial (Mt) dysfunction and disruption of intracellular redox homeostasis. The mechanisms by which alcohol causes Mt dysfunction, disrupts cellular redox homeostasis and triggers ne...

متن کامل

Hydrogen Peroxide Probes Directed to Different Cellular Compartments

BACKGROUND Controlled generation and removal of hydrogen peroxide play important roles in cellular redox homeostasis and signaling. We used a hydrogen peroxide biosensor HyPer, targeted to different compartments, to examine these processes in mammalian cells. PRINCIPAL FINDINGS Reversible responses were observed to various redox perturbations and signaling events. HyPer expressed in HEK 293 c...

متن کامل

Overlapping roles of the cytoplasmic and mitochondrial redox regulatory systems in the yeast Saccharomyces cerevisiae.

Thioredoxins are small, highly conserved oxidoreductases which are required to maintain the redox homeostasis of the cell. Saccharomyces cerevisiae contains a cytoplasmic thioredoxin system (TRX1, TRX2, and TRR1) as well as a complete mitochondrial thioredoxin system, comprising a thioredoxin (TRX3) and a thioredoxin reductase (TRR2). In the present study we have analyzed the functional overlap...

متن کامل

GSR is not essential for the maintenance of antioxidant defenses in mouse cochlea: Possible role of the thioredoxin system as a functional backup for GSR

Glutathione reductase (GSR), a key member of the glutathione antioxidant defense system, converts oxidized glutathione (GSSG) to reduced glutathione (GSH) and maintains the intracellular glutathione redox state to protect the cells from oxidative damage. Previous reports have shown that Gsr deficiency results in defects in host defense against bacterial infection, while diquat induces renal inj...

متن کامل

Platyhelminth mitochondrial and cytosolic redox homeostasis is controlled by a single thioredoxin glutathione reductase and dependent on selenium and glutathione.

Platyhelminth parasites are a major health problem in developing countries. In contrast to their mammalian hosts, platyhelminth thiol-disulfide redox homeostasis relies on linked thioredoxin-glutathione systems, which are fully dependent on thioredoxin-glutathione reductase (TGR), a promising drug target. TGR is a homodimeric enzyme comprising a glutaredoxin domain and thioredoxin reductase (TR...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brain : a journal of neurology

دوره 139 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2016